Fibroblasts from post-burn hypertrophic scar tissue synthesize less decorin than normal dermal fibroblasts.
نویسندگان
چکیده
1. Fibroblast cultures were established from biopsies of hypertrophic scar and normal dermis taken from nine patients recovering from second- and third-degree burns. The capacity of these fibroblasts to synthesize the small proteoglycan decorin was assessed by quantitative Western blot analysis of conditioned medium collected from confluent cultures. Levels of mRNA for decorin were assessed by quantitative Northern analysis. Since transforming growth factor-beta 1 is implicated in various fibrotic conditions, including post-burn hypertrophic scar, its effect on decorin synthesis by these paired fibroblast cell strains was assessed. 2. Production of decorin was lower in all cell strains of hypertrophic scar fibroblasts tested, compared with normal dermal fibroblasts cultured from the same patients (mean 49 +/- 23%; P < 0.001, n = 9). Levels of mRNA for decorin were also lower (mean 59 +/- 28%; P < 0.02, n = 7) but those for biglycan and versican were not significantly different. Four pairs of cell strains were examined at more than one passage and the differences in decorin protein were found to be phenotypically persistent. Treatment of confluent cultures with transforming growth factor-beta 1 for 3 days caused a reduction in both decorin protein and mRNA in all six strains of hypertrophic scar fibroblasts tested and in five of six strains of normal dermal fibroblasts. An increase in the length of the dermatan sulphate chain on decorin, a previously reported characteristic of this glycosaminoglycan in hypertrophic scar, was seen in all but two of the strains treated with transforming growth factor-beta 1. The depression of decorin synthesis by transforming growth factor-beta 1 was reversed on removal of the agent and passaging the fibroblasts. 3. The reduced capacity of fibroblasts in hypertrophic scar tissue to synthesize decorin may have implications for the development of the condition since this small proteoglycan is involved in tissue organization and may also play a role in modulating the activity in vivo of fibrogenic cytokines such as transforming growth factor-beta 1.
منابع مشابه
MicroRNA 181b Regulates Decorin Production by Dermal Fibroblasts and May Be a Potential Therapy for Hypertrophic Scar
Hypertrophic scarring is a frequent fibroproliferative complication following deep dermal burns leading to impaired function and lifelong disfigurement. Decorin reduces fibrosis and induces regeneration in many tissues, and is significantly downregulated in hypertrophic scar and normal deep dermal fibroblasts. It was hypothesized that microRNAs in these fibroblasts downregulate decorin and bloc...
متن کاملHypertrophic scar fibroblasts accelerate collagen gel contraction.
Excessive contraction of hypertrophic scar and subsequent contracture formation are a formidable problem after thermal injury. A comparison between fibroblasts from hypertrophic scar and normal skin was made with the use of fibroblast-populated collagen lattices as a measure of cellular generated contractile forces. Hypertrophic scar and normal skin fibroblasts were mixed with soluble tendon co...
متن کاملPhenotypic differences in cytokine responsiveness of hypertrophic scar versus normal dermal fibroblasts.
The alteration of normal dermal fibroblast function that leads to the development of hypertrophic scar after thermal injury is unknown. To determine functional differences that might explain this process, fibroblasts were cultured from biopsies of post-thermal injury mature hypertrophic scars and patient-matched normal skin. The mitogenic responses of scar cells to fetal bovine serum, epidermal...
متن کاملNormal skin and hypertrophic scar fibroblasts differentially regulate collagen and fibronectin expression as well as mitochondrial membrane potential in response to basic fibroblast growth factor.
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-in...
متن کاملInvestigating the Role of P311 in the Hypertrophic Scar
The mechanisms of hypertrophic scar formation are not fully understood. We previously screened the differentially expressed genes of human hypertrophic scar tissue and identified P311 gene as upregulated. As the activities of P311 in human fibroblast function are unknown, we examined the distribution of it and the effects of forced expression or silencing of expression of P311. P311 expression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical science
دوره 94 5 شماره
صفحات -
تاریخ انتشار 1998